A Frame-Based Conjugate Gradients Direct Search Method with Radial Basis Function Interpolation Model
نویسندگان
چکیده
منابع مشابه
A new trust-region algorithm based on radial basis function interpolation
Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملA new stable basis for radial basis function interpolation
It is well-known that radial basis function interpolants suffer of bad conditioning if the basis of translates is used. In the recent work [12], the authors gave a quite general way to build stable and orthonormal bases for the native space NΦ(Ω) associated to a kernel Φ on a domain Ω ⊂ Rs. The method is simply based on the factorization of the corresponding kernel matrix. Starting from that se...
متن کاملGrade Interpolation Using Radial Basis Function Networks
This paper analyses the application of Radial Basis Function (RBF) networks in grade interpolation. These networks are a very unique member of the family of Artificial Neural Networks. RBF networks have such theoretical properties that establish them as a potential alternative to existing grade interpolation techniques. Their suitability to the problem of grade interpolation will be demonstrate...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2017
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2017/4082432